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In the framework of the finite quantum electrodynamics developed in the 
previous paper, electron self-energy, vacuum polarization, and vertex correc- 
tion are calculated. It has turned out that the electron-neutrino mass differ- 
ence can be reproduced in a model where this mass difference is of pure 
electromagnetic origin. A positive sign of proton-neutron mass difference 
is obtained within our present theory. Furthermore, it is shown that our 
theory can give a clue to overcome the possible crisis of QED arising from 
the recent report of the discrepancy between theoretical and experimental 
values for the muon anomalous magnetic moment as an evidence for a 
possible breakdown of QED. 

1. INTRODUCTION 

In the previous paper (Cheon, 1978), we developed a finite theory of 
quantum electrodynamics which contains the fundamental length. Our basic 
equation of motion for a boson is the Bopp equation, which is a differential 
equation of fourth order. It is, of course, Lorentz invariant, while the equation 
of motion for a fermion is a quadratic differential equation. The propagators 
obtained from these equations have the same forms as those given by Feynman 
(1949), i.e., the particle propagator subtracted by that of the tildon which is 
confined only in the virtual state by the mass relation as a result o f  reflection 
of the discrete space-time associated with the fundamental length. 

It will be shown that our theory gives finite results for electron self- 
energy, vacuum polarization, and vertex correction. 

As is well known, the renormalization method can yield beautiful 
agreement between theory and experiment, in particular, anomalous magnetic 
moments of the electron and the muon. However, the recent experiment 
(Bailey et al., 1975) shows a possible discrepancy between theoretical and 
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measured values for the (g - 2) factor anomaly of the muon. One may also 
expect a breakdown of QED at somewhat high energy. We will present a 
discussion on how our theory is powerful enough to overcome a possible 
crisis of  QED. 

Since the self-energy can be calculated in the framework of our theory, 
a possibility will be expected to reproduce a correct sign for the pro ton-  
neutron mass difference. Furthermore, we propose here a model in which the 
electron consists of  a neutrino and a charge. 

The metric used in the present paper is goo = - g n  = -g22 = -ga3  = 1, 
and we use the natural unit h = c = 1. 

2. ELECTRON SELF-ENERGY 

The propagators  of  a photon and an electron are given in the previous 
paper in the forms 

1 1 1 
(1 - l o 2 k 2 ) k  2 = k z kZ  _ 1/lo 2 (2.1) 

h/to h/toC ( 1 I ) 
( p +  f i + c ) ( p -  f i _ c ) -  fit+ + f i _  p -  f i_e  p + ' f i + c  (2.2) 

where the masses fi  ~ are expressed with the fundamental length lo and the 
bitre mass mo as 

f i . 2  = 2 / ~  {1 _+ [1 - (21omoc/h)2]  lt2} (2.3) 

However, since the fundamental length in the photon propagator might be 
different from that in the electron (more generally fermion) propagator,  
we exPress them here as follows: 

1 1 
k 2 k 2 _ A 2 (2.4) 

(fi+2 + f i _ 2 ) 1 , 2 =  ( 7  1. 1 +.) 
m+ + f i _  f i -  p + ' f i  

(2.5) 

(Hereafter we use the natural unit h = c = i.) 
The lowest order of the electron self-energy (see Figure 1) is given in the 

usual representation, i.e., 

4,ra 
Am = 2ifi_(2~r) ~ (~' Y.u) (2.6) 
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Fig. 1. Feynman graph of the lowest order of the 
electron self-energy. P-k 

where ~ is the fine structure constant,  u is the wave function of  the free 
electron which is normal ized as (3, u) = 2rh_, and 

f (r~+ 2 + rh_2) 1/2 _ A  2 
Z =  y.  (/~ _ ff + rh+)(/~ - ~ - rh_) y" k2(k 2 - A 2) d ' k  (2.7) 

As a me thod  of  calculation of  this integral is shown in Feynman ' s  paper  
(1949), we follow it here by rewriting 

X = (rn§ + &_2)i/2 
r~+ + rh_ 

[ - - e  :- , ,e - 1 ,., _., , ,2 
x f y.[(/~ - -  k-~-)2 --- ~--_2 - (p _ Z)2--- ~-+=jY k: (k  ~, _ a 2) d ' k  (2.8) 

Making  use of  the formulas  

y.y" = 4 (2.9) 

y u y v y  u ---- - -  2yv (2.1 O) 

Z =/'~ ax 
(2.11) 

ab 2o [ax + b(1 - x)] = 

A 2 go  dL 

J (2.12) k2( k 2 -  a=) = -a= ( k2 + L )  2 

we obtain 

where 

Z = (rh+2 + rn-2)1/2 
r~+ + rh_ (A1 - A2) (2.13) 

fo f A2 = - dL d4 k ( k2 - 4rh + - 2rh_ + 2/~ (2.15) 
-A~ - 2 p k  + r ~ _  2 - r ~ + 2 ) ( k  2 + L )  ~ 

In  the derivation of  equations (2.14) and (2.15), we used the f ac t , /m  = n~_u 
for  the free-electron state. The  integral with respect to k can easily be carried 
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out by making use of  the formulas given in the Appendix:  

fo  dL f l dx i,,22r _x(2 _ x) 
A1 = -  x L  - (1 - x)2p 2 

J - A 2  d 0 

f f '  2i~'2~_(1 - y)(1 + y) = o dL dy ~ Z y 2 _ ( l _ y ) L  
J-A2 d 0 

= (-2iTr2r~_) dy(1 + y ) I n  y2 _ (A=/r~_~.)y + (AUra_2) (2.16) 

Here, we transformed as x = 1 - y. The integral (2.16) is trivial and yields 

A~ = 2i~-2ffz_Al (2.17) 
where 

A 2  
A1 = { l n ~ _  2_ + W(O+) + W(O_) (2.18) 

1 (30 + 1)(0 - 1) in (  1 
W(O) = -2-0 + 202 O) (2.19) 

_ j ( 2 . 2 0 )  

This result is exactly the same one as obtained by Feynman (1949) with a 
cutoff. 

Similarly, the integral (2.15) can easily be carried out and the result is 

A2 = -2 i r r  2 d y ( - 2 N +  - rh_ + rh_y) 

y ( r ' n _ 2 y -  rh 2 + gn + 2) 
x ln ffz 2 y 2 _  ( r h _ 2 -  r~+2 + A 2 ) y +  A 2 

= - 2i~'2-4"2r~ _ (2.21) 
where 

2 -  309. (1 - O2) 2 
+ 4---7 + ~ In (1 - ,0 2 )  

+ (2 + �89 ln p2 + (2 + p ) r l  - pP2} 

p = r~_/rh+ 
A 2 ~ ~ 2  2 

I'1 = - l n p 2  + r h +  ~ - -  A 21n - 1 

A ~ rh+ 2 I 
I'2 = - � 8 9  In p2 2(rh + - A2) 2 In A2 4 + 

A 2 
2(~ + 2 __ A 2) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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Thus, the electron self-energy is given in a simple form 

arh_ (rh+ 2 + rh_2) 1/2 
Am = 2"---~- rh+ + rh_ (A2 + -41) (2.26) 

For the case of  rh + >> rh_ 

(r~+ ~ + rh_2) zl2 ~o~ 
rh+ + r h _  = 1 - p + -  + . . .  (2.27) 

A 2 
Ax = { ln~Tj~ + �88 - �88 2 . . . .  (2.28) 

X ~ = ~  ( 2 + � 8 8  + . - . ) +  2 +  l n p 2 + ( 2 + p ) r ~ - p s  (2.29) 

As was expected, the electron self-energy due to the electromagnetic inter- 
action is finite. Therefore, it is possible to estimate the mass increase (decrease) 
of a particle when a charge is given. We propose here a model in which an 
electron is created by giving the charge to a neutrino and the mass difference 
comes from the self-energy due to the pure electromagnetic interaction. With 
rh+ = 3.45 x 106 GeV, A = 197 GeV, rh_ (neutrino mass) = 60 eV, and 
a = 1/137.03608, we obtain Am = 0.51 MeV. Although we consider only the 
lowest-order term, the neutrino-electron mass difference could be obtained 
by adjusting the values of  rh+ and A when the higher-order terms are taken 
into account. However, these quantities should be discussed together with 
the proton-neutron mass difference and the anomalous magnetic moments 
of  the electron and the muon. Numerical results will be given in Section 5. 

3. VACUUM P O L A R I Z A T I O N  

In this section we shall calculate the vacuum polarization and show that 
this quantity is also finite in our theory. 

The lowest order of  vacuum polarization shown in Figure 2 is described 
by the following integrals: 

ia rh+ 2 + r~_ 2 
II~,,,(k) = 4~ 3 (rh+ + rh_)  2 

;Tr C + * + X d4p l J [(p + k): m_:](p= ,~_=) 

Tr . (  7.(P + 4~ - r~+)7~(14 + rh_) 

Tr ( 7.(.~ + 4~ + rh_)7~(/~ - rh+) d~p l 

J [(p + k)~ - ~ :  ~ +2) 

+ T r  [(p + ~-j-~ - -  ~ - rh+2 ) (3.1) / 



134 Cheon 

P 

P+k 
Fig. 2. The lowest-order Feynman graph for the 

vacuum polarization. 

where Tr is to take the trace of matrices. Making use of the formula (2.11), 
we can rewrite the integrals (3.1) in the form 

II~(k) = i a  rh+2+rh_2{ f ~  f 7 . ( g+~+r~_ )7~ (g+~_)  
4~r 3 (rh+ +rh_) ~ Tr dz d4p [(p+kz)2+k2(z_z2)_rh_2]2 

f~ f ~,,(p + ~ -  r~ +)rv(p + r~_) - Tr dz d4p [(p+kz)2+k2(z_z2)_(~n+2 ffz_2)z_r~_2] 2 

_f~ .( v,(P +r + r~_)~,~(p- ~n+) 
- T r . o  dz_ d4p [(p+kz)2+k2(z_z2)_(rh2_rh+2)z_r~+2]2 

f 
+ Tr Jo dz j d4p [ ( ~ k ~ ~ ] 2 j  (3.2) 

Shifting the origin of interaction from p to p - kz considering the relations 

Tr (~'./~Vd~) = - 2g.~P ~ 
Tr (7,7v) = 4g,~ 

Tr (~,,k~,~k) = 8k, k~ - 4g,& 2 (3.3) 

Tr (V,VW~) = 0 

we obtain 

II.~(k) = ia rh+2+rh_ 2 
4rr 3 (r~ + + r~_) 2 

x { f~  dz f d4p -(8k"kv-4g"vk2)(z-z2)+g"v(-2p2+4~-2)[p2+k2(z_z2)_rh_2] 2 

- f ~  dz f d ' -  -(Skukv-ag"~k2)(z- z2) + g"v(- 2P2- 4rn +rh-) 
P [p~+k2(z_z~.)_(r~+~_~_2)z_r~_~]~ 

- f ~  dz f a p'" - ( 8 k u k v - 4 g g ~ k 2 ) ( z - ~ ~ + - - ~  z2) +g"~(- 2P2-4rn-rn + ) 

1 - (8k~.k. - 4g, ~k2)(z- z 2) + g,~( - 2p 2 + 4r~ + 2)} +fl azf d'p [pS+k2(z_z2)_r~+2] 2 - 

(3.4) 
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where we have taken account of the fact that the terms odd in p drop by 
integration. 1-l,v(0) gives the photon mass (i.e., the photon self-energy). 
Although it should be zero, the integrals (3.4) yield a divergent result for 
k = 0. In order to overcome this difficulty, let us impose a gauge invariance 
on it as is done in the usual theory, i.e., k"II~v(k) = II.~(k)k ~ = 0. Thus, 

0 = k.rI.~(k) 

ia rh+2 + rh_ 2 { fo x f -4k2(z - z2) + ( - 2 p 2 +  4rh- 2) 
=d.rra(ff, + + fft_)2k~ dz d~p -(-~-+-k-~-_-j) U_ ~ -  ~ 

f~  f - 4 k 2 ( z -  z2) + (-2p2 - 4rh+rn-) 
- dz d~p[p~ + k 2 ( z -  z2 ) _  ( m + 2 _  rh 2 ) z _  m_212 

3~ f -4k2(z - z2) + ( -  2 f  - 4rh +rn- ) 
- dz d*p [p~ + k2(z _ z2 ) _ (fn_ 2 _ r~+2)z _ rh+212 

dz f d4p -4k=(z - z2) + ~-72) 2p---~ + 4rh+~)\ f (3.5) + 
Jo J j 

On the other hand, since II.,(k) is a tensor of second rank, we can write it 
down in the form 

n.~(k) = kukvC(k 2) + k2g.~D(k 2) (3.6) 

Considering that C(k 2) + D(k 2) = 0 by the gauge invariance, we find 

g~qI,~(k) = k2C(k 2) + 4k2D(k 2) = -3k2C(k 2) (3,7) 

Thus, the vacuum polarization is expressed as 

IIu~(k ) = (kuk; - k2g.~)C(k 2) (3.8) 

Calculating the quantity g"qI.~(k) with (3.4) and taking (3.5) into account, 
we obtain the expression of C(k 2) as 

C(k2) = 2/a if/+2 + ff/-z {~  2 f Z--Z2 
~ (r~+ + r ~ _ )  ~ d z  d ' P  [p2  + k ~ ( z  - z ~) - r~_~]  ~ 

f~" f Z-- Z 2 -- dz d4p ~p2 + 

a'pcp2 + 

+ dz d~P [p2 + 

The form of II.v(k) obtained in 
guarantee that the photon mass 

k ~ ( z  - z ~) - ( r ~ , ~  - r ~ ) z  - r ~ _ ~ ] ~  

Z -- Z 2 

k ~ ( z  - z ~) - ( r~_~  - r ~ + ~ ) z  - r ~ + ~ ] ~  

Z -- Z 2 ) 

k 2 ( z  - z ~) - r~+"212 
(3.9) 

(3.8) and (3.9) is gauge invariant and has a 
is zero, as long as C(k 2) is finite. Using the 
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methods given in the paper by Feynman (1949), one can evaluate the integrals 
(3.9). The result is 

C(k2 ) = 2ic~ f i  +2 + f i  2 
rr, (fi+ + fi_)2 [A(fi+, rh_ ; k) + A(f i_ ,  fit+ ; k)] (3.10) 

where 

A ( f i , ,  f i , ; k )  = 4irr =A dz dYAzy  fi~ 2 

f i  f~ (z a - za)(y - y2)(1 - 2y) 
+ i=~A 2 aZ.o #Y [~y-=  k-~ ~ $ ?~UI 2 

(3.11) 

with 

A = ~+2 _ fi_9. 

After integrating with respect to y, A becomes 

A(~.,  fi_; k) = i,, ~ + --X- 1 6N- ~ 
2fi_ ~ 
A2 B-1 

4r~_~ -- 2f i+2fi_ 2 + 4fi_2k 2 
A2 Bo + 

(3.12) 

f i_4 _ fi+a + kZ(10fi_2 _ 2fi+2) + 2k ~ 
A2 B1 

_ f i _ ~  + 2fi+2fi_2 _ fi+4 + k2(8fi_2 _ 4fi+2) + 6k ~ 
A2 + B~ 

where 

(2fi_ 2 _ 2fi  + 2)k2 + 6k ~ 
A 2 

2k~ ] Ba + - ~  B~ (3.13) 

[A~ = k ~ _  z~) + fi-qd~ 
B , = f o  z' ln[  f f l_2_p(~2 . -z~  ] 

For  the case of  f i  + >> f i_  and f i_  2 >> k 2 we obtain 

(Afi+, f i_  ; k ) =  i r r 2 { - ( p ' + 2 p 6 +  �9 �9 . ) [ ( l u  ~ )  2 + -~] 

13 17 p~ 16 ~ p4 + ~ + --g + + . .  

(3.14) 

1 -F ( I - -  p2 -- 3p 4 . . . .  )lnp--~ 



i~
 

~ 
? 

II
 

,~2
 

,~2
 

I~ 
~'

-- 
~:

~'
 

.
.

.
.

 
4-

 
"u

 

~ 
',.

ol
 ~

 
+ 

o 
~

1
~

 
~ 

""
 

+
+

l 

%
 

+ 
,,

o
~

 
b"

 

+ 
,.,

,,,
 "

-' 
~ 

~ 
+ 

t 
..~

 
~ 

+ 

~l
 

"-
' 

+ 

t 
o~

 
o 

~t
~ 

~ + 
+ 

I 

,.-
-.:

--
.. 

.~
 

+ 
+ 

4-
 

i 
i 

x 
I 

x 
~ 

+ 
- 

1-
'-

- 
'-"

 
,--

.,1
~ 

I 
+ 

+ 
oo

 
+ 

,,-
.., 

I 

%
 

.~
 

+ 

I 
.:.

...
 

%
i"

- 
+ r 

I 
~1

.s
 

-t-
 

I 

L
-

-
J

 

4-
 

@
 

~"
 

4-
 

4-
- 

-t-
 

+ 
~ 

%
 

4-
 

-I-
 

" 

4-
 

4-
 

-I-
 

+ 

~1
 '-

-'
 

~
1

,-
 

%
 

t 

+ 
~

i 
"-

' 
-.~

 
,o

 

i 
I 

4-
 



138 Cheon 

This result is obviously finite. Therefore, the photon mass vanishes in the 
framework of our present theory. The observed external charge-current 
density is given in terms of the bare external charge-current density J,~(x) as 

j~ (x )  = I1 + c~ [ ( ~ + 2  .~p2 ) p2 ~r - 3 P +  + - . .  in 
(3.19) 

+ (232 ~ ) _  (432 lO0)p + (47#-_~__Q)p2 + - . . ] } J f ( x )  

with r~_ = 0.511 MeV, r~+ = 3.45 • 10 ~ GeV, and c~ = 1/137.03608, we 
find that the correction due to vacuum polarization is 3.770, i.e., 

J~(x) = 1.037 x J,2(x) 

The effective potential seen by the electron as a result of vacuum polarization 
effects is described as follows: 

a•f(k) = 1 + 157rrh_2 (10p 2 + . . . )  In p2 + 1 - 2p + + . "  au(k) 

(3.20) 
and in configuration space 

A, (x )=  1 1 5 4 _  2 ( 1 0 p 2 + . . . ) l n p 2 + l - 2 o + - - - ~ p  + . . .  [] A,(x) 

(3.21) 

where [] = ~8~ is the D'Alembertian operator. When all terms depending 
on O are neglected, our results reduce to those obtained in the usual theory. 

4. VERTEX CORRECTION 

In this section, we shall calculate the lowest-order Feynman graph shown 
in Figure 3. This correction is particularly important because the anomalous 
magnetic moment is involved. Tremendously precise values for (g - 2) of 

P- r,, p - k  

Fig. 3. Feynman graph for vertex correction. 
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electron and muon are now available in both experiment and theory (Combley 
and Picasso, 1974). The new data (Bailey et al., 1975) reveal a discrepancy 
between the experimental and theoretical values for the muon anomalous 
magnetic moment. This discrepancy might be an evidence for a breakdown 
of the usual QED. Thus it is extremely interesting to see the results induced 
from our theory. 

The vertex correction is obtained by calculation of the following matrix 
element: 

i~,,~+~+,~_~f(1 1 ) A(p~,P,)  - 4 - ~  + ,~_)~ 7~ ~ _ r ,~_ p2 _ <  + ,~+ a 

( , 1 , )  
x 1 ~ - ~ - , ~ -  l ~ , - ~ + r ~ +  ~' ~ k ~ - A ~  d'k 

By the formulas (2.1t) and (2.12), equation (4.1) can be rewritten as 

ic, rh+ 2 + rh_ 2 
A(p2,pz) = 4~ra (rh+ + r~_) ~ 

where 

with 

(4.1) 

x [ a ( r ~ _ , f f , _ )  - 6 ( r ~ + , f f , _ )  - a ( r ~ _ , r ~ + )  + 6 ( r~+ ,  r~+)]  (4.2) 

f , ,2  d4k 1 G(~:, ~7) = f , 7JP2 - "/~ + su)r - "/~ + ~7')7 ~ dL f ,~2 o ay (k 2 _ 2kpy - Ay)2(k2 - L) 2 (4.3) 

A. = ( f2  _ r~_2) + ( ~  - ~ ' )y  (4.4) 

P~ = P2 + (Pl - P2)Y = P2 - qY (4.5) 

~:',7/ = -T-rh~ for ~,,/ = rh~ (4.6) 

The lower limit 1m 2 in the integral (4.3) is temporarily introduced to avoid 
divergences due to the well-known infrared catastrophy (Feynman, 1949). 
This catastrophy can actually be resolved by summing up all graphs (Feyn- 
man, 1961). Making use of the following formula together with (2.9) and 
(2.10), 

7ua!~y" = 2(ah + ha) (4.7) 

7.ahdT" = - 2dba (4.8) 
we can easily find 

yv(p2 - ~ + r  - ~ + n')y v 

= -2/&ap2 + 2n'(p2a + ap2) + 25'(a/~1 + p~g) - 2~:'n'a 

+ 21~a1~2 + 2pla/~ - 2(~:' + ~7')(e/~ + ~a) - 2~a~ (4.9) 
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Integrat ion with respect to k can be carried out with the help of  the formulas  
(A. I0) and (A. 11) in the Appendix:  

G(G ",7) = i~r2 dL dy dx  (4.10) 
.j ~,.~ [xA u + (1 -- x)L  + x2pu2] 2 

g ( ( ,  ~7') = -2PzaP2 + 2~7'(p2a + a/~2) + 2~'(pza + apz) - 2~:'~'a 

+ x[2p~ap2 + 21hal, y - 2 ( (  + ~')(p~a + a/~)] 

- 2{x~pual)~ + a[xky  + (1 - x )L  + x~pu2]} (4.11) 

Considering ( p , 2 2 -  rh_~)u = 0 for a free particle state u and with the 
formulas  (2.9), (2.10), (4.7), and (4.8), we rewrite (4.11) in the fo rm 

g(~:', ~7') = - 2 [ ( ~ /  + q~ + rh_ 9 + 2rh_(rh_ - ~:' - r / )]a 

- 2rh_(aq - qa) + 2(~l'aq - ~'qa) 

+ 2x{[q ~ + 2r~_(rh_ - ~:' - ~/)]a 

+ [r~_ + (r~_ - ~:' - if)(1 - y)]aq 

- [ r h _  + ( r h _  - ~'  - ~ ' ) y l q a }  

- 2x~{[rh- ~ + qZ(y - yZ)]a + rh_(1 - y)aq - rh_yqa} 

- 2a[xAu + (1 -- x )L  + x2p~ ~] (4.12) 

The integral (4.10) with respect to L is first carried out as follows: 

f a2 y~x'~(1 -- X) ymxr~ 
.2 [xAy + (1 - x)L  + x2p~212 dL = xAy + (1 - x);~m 2 + x2py 2 

ymxn 

xA~ + (1 -- x)A 2 + x2p~ 2 (4.13) 

f x2 x(1 - x) xA~ + x2p~ 2 + (1 - x)A ~ 
,~2 xAu + (1 --- x)-L + x2pu 2 dL = x In xAy + x2pu 2 + (1 --- ~ (4.14) 

and the expansion in terms of  q2, 

1 1 
xA.  + (1 -- x);~m 2 + x2py 2 xA~ + (1 -- X)~,. 2 + rh_2x 2 

q2x2(y _ y2) 
+ [xky + (1 - X)),m 2 + rh_2X2] 2 + ' ' "  (4.15) 

is made use of  to reach a final expression of  A(p2, Pl). The other integrals 
are s t raightforward a l though tedious. The result is 

[G(rh_, rh_) - G(rh+, r~_) - G(rh_, rh+) + G(rh+, rh+)] 

= irr2[aFo(rh+, rh_, A) - a ~ 4q2 Fl(rh +, rh_, A) 

+ act_2N2- qa F2(r~+, rh_, A)]j (4.16) 



Electron Self-Energy, Vacuum Polarization 141 

where 

Fo(rh+, r~_, A) = [ - ( 1  + 9, 4 + 48, 6 + . - . )  

x l n ~ 5 -  + 4"2 + "' + 368"6 + " "  

+ [(4r~ +r~_ A- 4r~_ 2) (Ko - Jo) 8rh+r~_A 

4m-= (K2 - J2) + 4A7 ~ + ~  

- [(2rh+ = + 8r~+r~_ + 2rh_2)(Rl~ - R12) 

- (Sr~+r~_ + 4m_2)(R=l  - R22) 

+ 2r~-2(Ral - Ra2) + 2R6o] 

[1 rh-2 (~ 7 4 3 , ,  301 6 ) 
Fl(rh +, rh_, A) = ~ In ~ - + ez + 4-8 + -if6- e + . . .  

F2(r~ +, rh_, A) = 

q 
+ 2 In -~m2] 

- -  (K~ - .r~) 

(4.17) 

_ ( ~ 2 _ 4 1 E ~ _ 4 9 , 6 _ . . . ) l n l  1~5 

_ , ~ ,  2 ( K o _ J o )  3m_2 [~-X=- S (K1 - J1) + 3m-2A5  ~ 

- 3r~-2A6 ~ + 3r~t-2(R71 -- R72) 

+ (3rh+ r~-3 - 3r~-4)(al~ - 012) 

- 6r~+rh-3(Q2~ - 022) + 3rh_'(Oa~ - Q32)1 

+ 

3/~t_ 2 
x (T~ - T~2) 2 (R2~ - R22) 

+ ~ ( R a l  - R a 2 ) -  rh+rh- 3 + 

X (T~ -- 7'22) + - - T - ( T ~  - T~)  

1] + (2E 4 + 12e 6 + . . - )  In 

(4.18) 
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+ g 4 =)(Ko - ,o) 

- [ ( 4 ~ + , ~ _  + 4,~_~)(R~1 - R12) - ( 4 ~ + , ~ _  + 6r~_ ~) 

x (R2~ - R22) + 2r~-2(Ra~ - Ra2)] (4.19) 

Notat ions  used in (4.17)-(4.19) are given as 

= r~_/A (4.20) 

p = rh_/rh + (2.23) 

k = r h +  2 - ~  2 (3.12) 

p2 2p6 ] (4.21) 
- -  + n ( n  + 1)(n + 2) + ' ' "  Rnl = rh+----~ + n(n + 1) 

f ~ x '~ dx Rn2 = f n  _ 2x2 + ( A -  A2)x + A = 

1 f p2 
Tnl = [ 

r~+ 2r~-2 I_n---4-i 

2p r 6p 6 ] 
+ (n + 1)(n + 2) + (n + 1)(n + 2)(n + 3) + " ' j  

(4.23) 

(4.24) " X ~+2 dx 
T.2 = [r~_2x 2 + (A - a2)x + A2] 2 

f~ [rh-2x2 + ( A -  A2)x + A2] dx 
Roo = x in [ ~-fi-x ff 7+-Ax V )k ~ 

rh 2 A 2 A 2 rh_2 
A~ ~  ~ K ~ + ~ J , - z z & + - S r &  

A 2 rh_ 4 A 4 2 M  /6o -- 6 m  +-~-& Z z J~ + Z  z& 
2A2rh_ 2 + A 4 

A3 ,12 

2A2r~_ 2 rh 4 
+ A3 & ~-& 

A7 ~ = -  +T-~-{-ff-~ + - ~ 6 - t - . . .  + + 

rh_ 2 A -- A 2 A 2 1 
A ,]2 ~ J1---~ 'Jo +-~ 

- x l n  x~--~x+p dx 

p2 p4 p6 
7 + ~ + $  

(4.25) 

(4.26) 

(4.27) 

+ �9 �9 �9 In p~ 

(4.28) 
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K.-1 [ In 1 1 02 p~ 
= n -~ + n 2 n(n + 1) n(n + 1)(n + 2) 

2p 6 

n(n + 1)(n + 2)(n + 3) 

J._~ = x '~-z In m-2x2 +rh_2x2(rn+2 _- rh-2A2 x ~- AzA2)x + A2 dx 

4 [(~ 9P2 23p~ ? p6 ) 
Q l l -  3rh+2rh 2 + ~  + - -  + + " "  

-- (~ p2 -q- ~ Oa + 2-1-1p6 +. . .) ln-;] 

4 [(-~ 121p~ 411p 6 ) 
Q21 = 3rh+2rh_2 + ~ + ~ + " "  

+ (~02 + ~P4  + ~ P 6  + ' " )  l n ~ ]  

4 [ ( 9 02 + 507 04 2397 06 ) 
Qal = 3rh+Zrh_~ ~ + 1 ~  + " "  

_ p2 + ~ + ~ 0  7 Oo 1 

4 [3A2~__ +2r~_ 2 3A2rh+~r~_Zyn_l 
Q'~ = 3r~+2rh_ 2 [4(n + 1)AS + 2A3 

3 ( A -  2A 2) ~ 2~ 2- 3rh+2rh_ ~_ ] 
+ 4---A5- m+ m_ an + ~ a'n+l] 

( R 7 1 - R v 2 ) = 4 1 2 1 p ~ l ~ 3 0 ~ p 6  ( 3 p ~  21p 6 ) 
3-~__~ ~ + + . . . .  + T 6  + ' "  

1 A2rh_ 2 3A4rh_ 2 
x In p2 8A2 + 4A--------~-- 3"o 

6A4rn-2 - 3A2rn-2A J1 
4A8 

3A2rh_~A - 6rh_4A2 - 3A4rh_2 
4A8 J2 

+ 3Arn-4 - 6A2r~_~j, 3r~_ 6 ] 
] 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 



144 Cheon 

The quantity 

r~+ 2 + rh_ 2 
(~+ + r~_) 2 F2(r~+, r~_, A) 

gives the anomalous magnetic moment. In the limit A --+ + and rh + --+ + it 
reduces to the Schwinger term obtained by the usual theory. 

It should be noticed that even in the absence of infinities, the physical 
quantities such as the mass and charge have to be renormalized. If  the theory 
were in the plight where divergence problems would keep us from extracting 
a clear physical picture, renormalization might be questionable. If  the theory 
were, however, divergence free, renormalization could completely be per- 
formed. The origin of renormalization is due to the fact that the state of the 
system is described in terms of unperturbed bare wave functions, whereas 
interaction between fields can never be switched off in the actual world. In 
addition, since only the bare mass (charge) plus the corrections to it can ever 
be observed, the observables must always be expressed in terms of the 
renormalized constants. Therefore it is reasonable in numerical calculation 
of the anomalous magnetic moment to use the experimental values for rh _ 
and a in the above formulas. Numerical results and discussions are given in 
the following section. 

5. NUMERICAL RESULTS AND DISCUSSIONS 

In this section we shall give our numerical results and discussions on the 
self-energy and the anomalous magnetic moments of the electron and the 
muon. 

5.1. The Electron Self-Energy and the Mass Differences of  Neutrino- 
Electron and Neutron-Proton. Mass difference between the proton and neu- 
tron is a long-standing problem. Feynman and Speisman 0954) are the first 
persons who tried to calculate the proton-neutron mass difference field- 
theoretically. They pointed out that it was possible to obtain a negative sign 
for rn~ - rn~ by a suitable choice of cutoff parameters since the proton has 
the anomalous magnetic moment under effects of the strong interaction. Cini, 
Ferrari, and Gatto (1959) estimated this quantity as mp - rn~ = +0.66 MeV 
(experimental value is -1.2933 +_ 0.0001 MeV) using the nucleon form 
factor determined by the e-p scattering. In spite of numerous calculations, 
even a negative sign has not been obtained, apart from its absolute value. 

Our present theory gives a positive sign to the proton self-energy and 
its absolute value is quite large compared with the experimental data. 
However, when effects of the strong interaction are taken into account, the 
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absolute value will reasonably be reduced because the cross term between the 
Coulomb repulsive part and magnetic moment part has an opposite sign. A 
correct sign might be reproduced. 

Let us consider a model in which the neutrino and the electron are the 
same family. When a charge is given to the neutrino without worrying about 
the mechanism of load, the charge creates its own electromagnetic field and 
the neutrino increases in mass through interaction with its own field. This 
mass increase is just the electron self-energy which was calculated in Section 2. 
The experimental status of the neutrino masses is not very good, so that we 
have only upper limits for them: 

mve ~< 60 eV, my, ~< 1.2 MeV (5.1) 

Our numerical results are given in Table 1. Although we considered here only 
the lowest-order Feynman graph, inclusion of higher orders requires merely 
small modifications for l~ and le,N. The value of the electron self-energy does 
not change for m~ < 1 MeV. 

Yet, it is important that the anomalous magnetic moments of the 
electron and the muon can consistently be explained. From the point of view 
of the successful unification of the electromagnetic and weak interaction, 
a unification of the neutrino and the electron must be significant. 

5.2. The Anomalous Magnetic Moments of the Electron and the Muon. 
The fantastic measurement of the g factor anomaly for ~ + ,  a - ( g  - 2 ) / 2  = 

(1 165 895 + 27) x 10 -9, were recently done by using the CERN Muon 
Storage Ring (Bailey et al., 1975). And it turned out that the experimental 
value is (13 + 29) x 10 -9 below the theoretical value in which the pure QED 
contribution up to sixth-order terms, (1 165 835 _+ 2 .2 )  x 10 -9 (Combley and 
Picasso, 1974), and a hadronic contribution of (73 + 10) x 10 -9 are in- 
cluded. The eighth-order term makes a contribution of ((3.2 + 0.2) ,~ 5) • 
10-9 (Lautrup, 1972; Calmet and Peterman, 1975b) and the weak-interaction 
contribution is conjectured to have about the same magnitude as that (Bailey 
et al., 1975; Jackiw and Weinberg, 1972). Therefore, if there were a discrepancy 
between the experimental and theoretical values even after taking proper 
account of contribution from the weak interaction, it would be evidence for 
breakdown of the usual theory of QED. For  this reason, the g-factor anomaly 
is extremely important. 

Calmet and Peterman (1975a) estimated the pure QED contribution up to 
sixth-order terms and their result is (1 165 827 + 3) x 10 -9. The hadronic 
contributions were estimated by several groups, Gourdin-de Rafael (1969), 
Branion-Etim-Greco (1972), Barger-Long-Olsson (1975), and Calmet- 
Narison-Perrottet-de Rafael (1976), and their results are (66 + 9) x 10 -9, 
(68 + 9) x 10 -9, (66 + 10) x 10 -9, and (66.4 + 10.2) x 10 -9, respectively. 
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With Calmet-Peterman's values (1 165 827 + 3) x 10 -9 for the pure QED 
contribution up to sixth-order terms plus (3.2 + 0.2) x 10-9 for the eighth- 
order term and Barger-Long-Olsson's value for the hadronic contribution, 
we obtain aexp - (aQ~D + ah~a) = --1 x 10 -9. Accordingly, without weak- 
interaction contribution, the experimental value of the/x + g-factor anomaly is 
smaller than theoretical value by (1 ~ 16) x 10 -9. If weak-interaction con- 
tribution has a positive sign, the discrepancy becomes larger. Continuing 
measurement by CERN Muon Storage Ring Collaboration (Bailey et al., 
1975) will reduce the error. 

On the other hand, the g-factor anomaly for the electron was measured 
by two groups (Wesley and Rich, 1971 ; Granger and Ford, 1972; Walls and 
Stein, 1973) since 1970. The result obtained by Wesley and Rich (1971) is 
(I 159656.7 + 3 .5 )x  10 -9, which is larger than the theoretical values 
obtained by several people: 1.7 x 10 -9 (Levine and Wright, 1971), 3.8 x 
10 -9 (Kinoshita and Cvitanovic, 1972), 4.8 x 10 -9 (Levine and Wright, 1973), 
and 5.0 x 10 -9 (Cvitanovic and Kinoshita, 1974). 

The anomalous magnetic moments of the electron and the muon obtained 
in the present theory have a small deviation Aa from the Schwinger term. If  
this deviation is of order of 10 -~, our corrections to the higher-order terms 
can be neglected. The numerical results are given in Table 1. Since our correc- 
tion is a function of rh _, the results are different for the cases of electron and 
muon. However, it should be noticed that the correction to the muon (g - 2) 
factor has an opposite sign to that of the electron. At present, our corrections 
to the (g - 2) factor anomaly have correct signs. 

6. C O N C L U D I N G  R E M A R K S  

It has been shown that our theory gives correct signs and magnitudes for 
the neutrino-electron mass difference, except the neutron-proton mass 
difference, and the (g - 2) factor anomaly of the electron and the muon. It 
should also be emphasized that our theory is divergence free. From numerical 
calculations of various physical quantities, we conclude that the fundamental 
lengths contained in the theory are 

h 
lph = ~ = 2 x 10 -16 cm (6.1) 

for the photon and 

h 
le,N = c(rh+2 + rh_2)l12 ~-- 0.25 x 10 -19 cm (6.2) 

for the fermion. The fundamental length (6.1) corresponds to A ~ 100 GeV 
and, thus, the critical mass (Cheon, 1978) is _ 50 GeV, which seems to be a 
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reasonable magni tude f rom the view of  the intermediate vector  beson 
(Salam, 1968; Weinberg,  1967). 

In the present  paper,  we have given discussions on the low-energy 
quantities. Since there is a possibility that  a significant deviation f rom the 
usual Q E D  may  appear  in the region of  large m o m e n t u m  transfer,  it would be 
interesting to test our  theory for  the high-energy scattering such as e+e - -+  
e+e - ,  and e+e - -->/z+tx - ,  etc. 
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A P P E N D I X  

We shall give the formulas  which are frequently used in calculation of  
the self-energy of  the electron, the vacuum polarization,  and the vertex 
correction. 

First o f  all, put t ing x = ko and a 2 = t ~ + L in the integral formula  

f o~ dx i,~ (A.1) 
_ ~ X 2 - -  a 2 + iE a 

we obtain the following expression: 

f o~ dko - i ~  
-co ko 2 - ( t2 + L )  + ie = (t 2 + L )  1/2 ( A . 2 )  

Differentiating (A.2) with respect to L gives 

f o~ dko irr 
-~o [ko z - ( t2 + L)  + ie] 2 = 2(~ 2 + L)  a~2 (A.3) 

Differentiating (A.3) again with respect to L and considering 

f ~o d3k  4zr (A.4) 
-~o ( t2 + L) 512 3L 

we obtain 

f ~  = - (A.5) 
d4k  ilr__~ 2 

_ ~ ( k  2 - L  + ie) a 2L 

Since k 2 - 2pk  + A = (k  - p)2 + ( A - p2), the following integral can be 
carried out  with the help of  the formula  (A.5): 

f ~  ( 1 ; k o ) d 4 k  f |  (1 ; / ~  + po)d~k  
_ ~ ( k  2 -  2 p k + A + i ~ )  a = _| ( f i - - p 2 ~ - ~ ' - ~ ) 3  

- irr2(1 ; P~ (A.6) 
2(p~ - A) 
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where a = 0, 1, 2, 3 and we used the fact that  the integral of  odd function 
with respect to /7  vanishes. 

Making use o f  the formula  

1 f2 2x dx (A.7)  
a2b = [ax + b(1 - x)] 3 

we find 

f | (1 ; k~)d~k~ 
_ | (k 2 - 2p~k + A~)2(k 2 - 2p2k + A2) 

f o o  f ~  2x(1 ; ko) 
= d4k dx (k 2 _ 2pxk + Ax)3 

- - o o  

where 

f ~  i~r2x(1 ; P ~ )  = ( A . S )  

px = xpl  + (1 - x)p2 (A.9) 

Ax = xA1 + (I - x)A2 

and we dropped the factor iE in the denominators.  By differentiating both 
sides o f  equation (A.8) with respect to A2, one can easily find 

f ~  (1; k~)d4k f ~ (1; ,~o)xfl - x) 
_ | (k ~ - 2plk  + - A 1 ) - ~  - 2p2k + A2) 2 = i r r 2  ~-~_---~x-~ ax (A.10) 

Differentiating o f  (A.8) with respect to p2o for  a = 0 and P2j for  a = j yields 

f oo k~k f l4k  
-oo ( k2 - 2p~k + A1)~(k 2 - 2p2k + A2)2 

['~ x(l  x)[px~px,  + (1/2)~,(Ax 2 
- - P~ )] dx (A.11)  = izr 2 

�9 Jo (--Ax : -  P - - ~  
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